Our Friends The Pollinators (Våra vänner pollinatörerna) is a workshop and pedagogical activity that has been recurring in various forms over the past ten years.

Våra vänner pollinatörerna, Hästa gård 2012. Foto: Erik Sjödin

[Våra vänner pollinatörerna, Hästa gård 2012]

The idea when the workshop was first done was to expand from work engaging with honey bees and their troubles, to include solitary bees which, as species, actually are more threatened. The idea was also to make a fun and educational activity for both kids and adults that can inspire environmentally positive activities and develop practical skills. Since then the workshop has happened a number of times in various contexts, from being a “summer job” activity with youths, to a short course with university students in architecture and design, and as part of programmes connected to exhibitions in art spaces.

Våra vänner pollinatörerna, Lötsjön 2018. Foto: Erik Sjödin

[Våra vänner pollinatörerna, Lötsjön 2018]

During the years the workshop has evolved to be more pedagogical for people of all ages and more manageable for the facilitator. Since building nests for solitary bees has become a quite popular activity and is promoted by many environmental organizations, I’d like to share some experiences that may be useful for others who do workshops in building nests for solitary bees.

This is not intended as in-depth workshop instructions but are hopefully some useful takeaways:

  • Reed is a great material to use for making nests for solitary bees. Reed can be cut with regular scissors so that one end of the piece is plugged by a “node” and the other end is open. This is perfect for solitary bees because some species need holes that are at least ten centimeters in depth to lay eggs that produce both male and female bees, and the bees prefer holes they can’t see through. A bundle of ten such reed straws is great because it gives a female solitary bee plenty of space to lay her eggs in during the summer. Reed is also easy to collect, where it grows there usually grows a lot.
  • A large bundle of reeds can also be used as a prop to “set the stage” for the workshop. Arranging various workshop materials in a fun way draws participants into the workshop and makes for nice documentation pictures which can further inspire people.
  • The reed can be bundled together with string. You can also roll the reed in f.ex wellpapp or birch bark if you want to add more “work” to the workshop. Wellpapp is easy to work with even for kids and can be painted on. Birch bark needs to be cut with secateurs or knife, so it’s more for youths and adults, but working with birch bark is a fun sloyd activity.
  • Painting the nest with finger paint is probably of no use to the bees, but it could theoretically help them find their nest faster, and painting the nest it’s often the most fun part for people. If the finger paint is nontoxic then  it doesn’t harm the bees or people. But toxic paints should be avoided.
  • Deep holes drilled in wood are great for bees to live in, but it requires long wood drills, which can be difficult to find. And power tools require very careful attention and guidance if kids are involved. However, giving youths freedom to use power tools can be very exciting and engaging for them.
  • Making a nest for bees can be a great exercise in balancing aesthetics (from a human perspective) and function (from the bees’ perspective). A nest that looks appealing to humans might not be at all functional for bees.
  • Making nests for solitary bees works. Chances that bees inhabit them are quite high. But it’s important to place nests properly. This means placing them in a warm and sunny spot, in a secure way so they don’t blow away, and preferably not easily  accessible for birds who may pick the nest apart and eat bee larvae. If the nests have been made with well papp and / or painted with water based paint they also need to be sheltered from rain. Chances that bees find them increase if there are flowering plants nearby.
  • In the spring female solitary bees start to look for hollow plant stems and holes made by other insects in wood to lay their eggs in, and they work all summer laying eggs in the holes they find. Solitary bees develop from eggs, to larvae, to pupae, to bees, during autumn to spring. So the nests need to be put out in the spring / early summer and stay in the same location until at least the next spring. It’s less abstract for the participants if they are shown some illustrations or photos of how for example mason bees and leaf cutter bees nest, their life cycles and how the bees look.
  • Avoid using non biodegradable materials such as plastic that may become litter that is harmful for the environment. And avoid using toxic paints that may be harmful for bees and people.
  • Making nests for solitary bees likely does not make any difference for bees on a species level. It’s an activity which, if done well is educational and helps a few bees. However, if the wrong materials are used it could actually be counterproductive from an environmental perspective.
  • Many “bee hotels” for solitary bees that can be purchased are designed wrongly, with f.ex. not deep enough  holes or too wide hole diameters, and many are “made in china” and imported. They are more examples of the problems than solutions.
  • What actually matters to bees are things such as less monocultures and less use of pesticides in agriculture, more meadows, and more and wilder parks and gardens.
  • Kids need to learn by playing and having fun, and not be put off by all the troubles of the world. But if the point of the workshop is to do something that makes a difference for bees then youths and adults ought to be informed about what the actual troubles and solutions are. To avoid disappointment it’s also important to share that there is no guarantee that a nest for bees will be inhabited. If the nest isn’t inhabited or if the nest breaks or is damaged then it can still be an experience to learn from.

 
 
 
 


Den 9 april kl 13-17 bjuder Konsthall C tillsammans med konstnären Erik Sjödin in till workshopen “Våra vänner pollinatörerna” där vi bygger bostäder för solitärbin.

Vi kommer också att göra krukor av tidningspapper och så fröer som vi förodlar i konsthallen och planterar ut i vår. Nu i vår kommer Konsthall C att få nya odlingsytor iordningställda i Fagerlidsparken. I dessa kommer vi under sommaren att odla blommande växter för pollinatörer och växtfärgning.

Erik Sjödin är en konstnär boende i Hökarängen som bland annat arbetar tematiskt med bin och andra pollinatörer. Tillsammans med Erik Sjödin kommer vi under våren och sommaren att utveckla Konsthall C’s odling och genomföra fler workshops.

Under våren kommer vi också att visa Eriks projekt “Den politiska biodlarens bibliotek”, ett arbete med att samla in, organisera och presentera böcker där paralleller dras mellan hur människor och bin är socialt och politiskt organiserade, samt “Standard honungsbihjärna” som genom att belysa olika aspekter av bins hjärnor ställer frågor om kognition och medvetande.


 
 
 
 


[Honeybee Brain Model. In parts. 3D-printed in wood / PLA and hand-painted.]

The honeybee brain is smaller than one cubic millimeters and has about one million neurons. The human brain, in comparison, has almost one hundred thousand times more neurons and is more than one million times larger. But despite its minuscule brain size the honeybee exhibits complex and rich individual and social behaviour, in many ways similar to humans.

Honeybee Brain Model is part of an ongoing investigation into the honeybee brain and its similarities and differences to the human brain.

The 3D-printed honeybee brain model pictured above is a physical representation of the “Honeybee Standard Brain” (HSB), a digital model assembled by the Menzel Neurobiology group at Frie Universität Berlin from images of bee brains taken with confocal microscope. The scientists model serves as a tool for comparing shapes and structures of the bee brain and relating the brain to functional properties. The representation of the model presented here is, as an artwork, also intended as an open-ended entry point into questions around cognition and consciousness in humans and nonhumans.

The items in the photo above are all the major parts of the honey bee brain included in the HSB 3D-model. However, they have been separated from each other and placed on a flat surface. They are not placed corresponding to how they are actually arranged and connected in 3D-space. Arranged in this way the parts can be seen as pieces of a puzzle.


 
 
 
 


Under hösten och våren 2021/22 kommer bibodarna i Marabouparken och vid Lötsjön i Sundbyberg att underhållas. Bibodarna har nu stått i parkerna sedan 2018 och i princip alla borrade vedträn i bodarna har bebotts av solitärbin. För att förhindra att parasiter får fäste och sprider sig i bibodarna har delar av de gamla vedträna bytts ut mot nya.

I botten av biboden var tidigare ett humlebo. Det har inte fungerat, vilket var väntat eftersom bon byggda åt humlor sällan attraherar humlor. Humleboet har därför ersatts med en “släpplåda” där borrade vedträn kan placeras för att tömmas på bin. Vedträn som ska bytas ut läggs under vintern i lådan. Tanken är att på våren kan bina sedan flyga ut ur vedträna och lådan men kommer inte att flyga tillbaka in i lådan och bygga nya bon i vedträna. Vedträna, som nu är tomma på bin, kan sedan eldas upp eller rensas. Om vedträn regelbundet byts ut eller rensas minskar risken att parasiter får fäste och sprids i biboden.

Framöver kommer bibodarna att förses med nya skyltar och bli en del av ett större projekt som inkluderar nya och vidareutvecklade bibodar samt en handbok i hur man bygger bibodar.


 
 
 
 


Konstfrämjandet in Västerbotten och KF Huset in Klöse, Nordmalings bjöd in konstnären Erik Sjödin till KF Huset i Klöse, Nordmalings, för att laga eldsoppa, experimentera kring eldstäder och samtala om människans långa och komplexa relation till eld. 

En eldsoppa är en varm och stark soppa kokad över eld med i huvudsak röda, orangea och gula ingredienser. Eldsoppa som begrepp kan också tolkas som en metafor för den röra mänskligheten ser ut att ha försatt sig i genom sitt intensiva användande av eld. 

En trestenseld är en av de äldsta, enklaste och mest grundläggande lösningarna för att koka mat över eld. Runtom i världen lagar tre miljarder människor fortfarande sin mat över mer eller mindre öppen eld och trestenseldar är fortfarande en av de vanligast förekommande spistyperna. 

Medan deltagarna lagade eldsoppa på trestenselden samtalade de kring olika aspekter av människans långa och komplexa relation till eld. Samtalet fortsatte senare i KF huset där deltagarna introducerades till böcker om eld och matlagning och idén om Pyrocen som beskriven av Stephen J. Pyne i essän “The planet is burning“. 

Pyrocen är ett begrepp som i likhet med antropocen föreslår att människans aktivitet kan likställas med tidigare geologisk aktivitet på Jorden. Pyrocen föreslår att det är användandet och kontrollerandet av eld som är den mest påtagliga av människans aktiviteter och att vi nu lever i en “eldens tidsålder” där eldens påverkan kan jämföras med isens under tidigare istider. 

OBS: Det är generellt inte tillåtet att elda annat än på anvisade platser. Innan du gör upp en eld: 1. Kolla med räddningstjänstens om det är tillåtet att elda eller om det råder eldningsförbud. 2. Elda inte när det blåser och är torrt, då sprider sig elden mycket fort. 3. Ha alltid släckningsutrustning till hands. 4. Se alltid till att vara minst två personer om något händer. 5. Se till att ha möjlighet att larma om olyckan skulle vara framme, till exempel med mobiltelefon.

Tack till KF Huset i Klöse och Konstfrämjandet i Västerbotten


 
 
 
 


Eldsoppa. Foto: Erik Sjödin

Eldsoppa
Vårby gård
Lördag 9/10 kl. 14.00 – kl. 19.00

Vi samlas på Vårby gårds bibliotek för ett kort samtal om hur böcker ingår i konstnären Erik Sjödins arbete. Sedan går vi upp på närbelägna Korpberget för eldsoppa och samtal om människans långa och komplexa relation till eld.

Från och med måndag 4/10 till lördag 9/10 finns en kastrull med böcker på Vårby gårds bibliotek. Böckerna i kastrullen belyser människans långa och komplexa relation till eld och kan lånas för att läsas på biblioteket och sedan lämnas tillbaka i kastrullen.

För anmälan till eldsoppan, mejla till: kristina.lindemann@huddinge.se

Eldsoppan är en del av Friluftsliv med Fullersta gård där Konstnärerna Juanma González, Susan Whitlow och Erik Sjödin bjuder in till utflykter i konstens anda i anslutning till olika delar av Huddingeleden.

Tillsammans med konstnären Erik Sjödin besöker vi två naturreservat i anslutning till Huddingeleden. I dessa andningshål kommer vi laga en varm och stark soppa kokad över eld med i huvudsak röda, orangea och gula ingredienser. Denna ”Eldsoppa” blir utgångspunkten för att prata om den röra mänskligheten ser ut att ha försatt sig i genom sitt intensiva användande av eld.

Samtalet mellan Erik Sjödin och alla deltagare kommer kretsa kring människans långa och komplexa relation till eld och idén om Pyrocen. Begreppet föreslår att det är användandet och kontrollerandet av eld som är den mest påtagliga av människans aktiviteter och att vi nu lever i en “eldens tidsålder” där eldens påverkan kan jämföras med isens under tidigare istider.


 
 
 
 


The Political Beekeeper's Library, Varvsarbetarhuset

The Political Beekeeper’s Library is an effort to collect, organise and activate books where parallels are drawn between how bees and humans are socially and politically organised. Bees are one of the most written about animals and have featured extensively in philosophy and literature. The books in the library show a fascinating narrative beginning with Aristotle’s Historia Animalium (History of Animals) (4th century BC) to Charles Butler’s The Feminine Monarchy (1609) to Thomas D. Seeley’s Honeybee Democracy (2010). What starts as a story of a patriarchal monarchy ends with a tale of radical democracy. 

At Varvsarbetarhuset in Sätraskogen in Stockholm the library was presented during their Kajko festival in September 2020.


 
 
 
 


Eldsoppa, Gladöskogen 2021

Tillsammans med konstnären Erik Sjödin besökte deltagare i Friluftsliv med Fullersta gård Gladöskogens naturreservat för att lagade eldsoppa och samtala om människans långa och komplexa relation till eld.

En eldsoppa är en varm och stark soppa kokad över eld med i huvudsak röda, orangea och gula ingredienser. Eldsoppa som begrepp kan också tolkas som en metafor för den röra mänskligheten ser ut att ha försatt sig i genom sitt intensiva användande av eld.

Eldsoppa, Gladöskogen 2021

Samtalet mellan Erik Sjödin och deltagarna kretsade kring idén om Pyrocen. Ett begrepp som föreslår att det är användandet och kontrollerandet av eld som är den mest påtagliga av människans aktiviteter och att vi nu lever i en “eldens tidsålder” där eldens påverkan kan jämföras med isens under tidigare istider.

Eldsoppa, Gladöskogen 2021

Eldsoppa med Fullersta gård är en del av Friluftsliv med Fullersta gård där konstnärerna Juanma González, Susan Whitlow och Erik Sjödin bjuder in till utflykter i konstens anda i anslutning till olika delar av Huddingeleden.

Programmet riktar sig till alla som vill bekanta sig med Huddinges naturområden och som är nyfikna på hur konstnärer tänker. Aktiviteterna ger tillfälle för samtal och utbyte både med konstnärerna och med de andra deltagarna, utan krav på förkunskaper eller stor friluftsvana.

Huddingeleden är en ca 83 km lång vandringsled och löper genom hela kommunen och knyter samman dess 13 skyddade naturområden. Stigar och leder tar oss från höghus och villa till orörda skogar, fågelrika sjöar och ett levande kulturlandskap.

OBS: Det är generellt inte tillåtet att elda i skyddade naturområden på annat än anvisade platser. Innan du gör upp en eld: 1. Kolla med räddningstjänstens om det är tillåtet att elda eller om det råder eldningsförbud. 2. Elda inte när det blåser och är torrt, då sprider sig elden mycket fort. 3. Ha alltid släckningsutrustning till hands. 4. Se alltid till att vara minst två personer om något händer. 5. Se till att ha möjlighet att larma om olyckan skulle vara framme, till exempel med mobiltelefon.

Dagarna förenar friluftsliv, kulturarv och samtidskonst. Tack till Fullersta gård och curator Kristina Lindemann.


 
 
 
 


Explorative rendering of the Honeybee Standard Brain

[Explorative rendering of the Honeybee Standard Brain. Tomma rum, Vännersta 2021.]

The Honeybee Standard Brain (see explorative rendering above) is a three-dimensional atlas of a honeybee brain assembled by the Menzel Neurobiology group at Frie Universität Berlin based on images of bee brains taken with confocal microscope. It serves as a tool for comparing shapes and structures of bee brains and relating the brain to functional properties.

The honeybee brain is smaller than one cubic millimeters and has about 950 000 neurons. The human brain, in comparison, has almost one hundred thousand times more neurons (about 85 billion) and is more than one million times larger (about 1200 cm3). Despite its minuscule brain size, and 600 million years of evolutionary divergence from vertebrates, the honey bee exhibits complex and rich social and individual behaviour in many ways similar to humans. There is a complex division of labor in the hive and individual honey bees vary dramatically in their behaviour due to genetic, developmental, and physiological differences. Bees master different forms of learning including categorisation, contextual learning and rule abstraction and exhibit a richness of experience-dependent behaviour.

The honeybee has been subjected to a variety of behavioural studies in areas such as navigation, social organisation, and learning and is considered to have great potential as a model for exploring interactions between environment, behaviour and brain structure. Although understanding how experiences are represented in brains and shape future responses is a major challenge in behaviour studies researchers in animal cognition believe that there is a fair chance to understand complex behaviour in bees, and to identify neurobiology underlying such behaviour.

While nowhere near a complete overview of what is known about what goes on in the bee brain, a sample of scientific research papers on neuroscience and cognition related to bees gives some indication of the honeybee brain’s complexity:

– Olfactory (smell) stimuli are first processed in the antennal lobe, and then transferred to the mushroom body and lateral horn in the bee brain. Studies show that honeybees can perform elemental learning by associating odour with a reward signal even after damage to the pathways to the mushroom bodies. Further, research also show that bees might learn to solve positive patterning tasks in addition to elemental learning and olfactory generalisation without the contribution of the mushroom bodies. However, the mushroom bodies may be required for negative patterning. An example of positive patterning in the case of bees would be that bees learns that two different odours when presented together means a reward of sucrose solution. Negative patterning would mean that when one of two odours is available, but not both at the same time, then that means a sucrose reward.

– High concentrations of octopamine, dopamine, serotonin and tyramine, exist in bees nervous systems and function as neurotransmitters, neuromodulators and neurohormones. Dopamine and serotonin are present in high concentrations in the bee brain, whereas octopamine and tyramine are less abundant. Octopamine generally has an arousing effect and leads to higher sensitivity for sensory inputs, better learning performance and increased foraging behaviour. Tyramine has been suggested to act antagonistically to octopamine, but only few experimental data are available for this amine. Dopamine and serotonin often have antagonistic or inhibitory effects as compared to octopamine. When bees are under stress the brain levels of octopamine and dopamine are depressed, which appear to affect worker bees sense of reward when foraging, making them fly slower between the hive and a food source. The presence of large predators elicits the release of an alarm pheromone, carried by the bees’ stinger, which alerts and recruits more defenders to organize a collective attack. The alarm pheromone increases serotonin levels in the bee brain, thereby lowering the stinging threshold of bees exposed to the pheromone.

– Honey bee queens produce a sophisticated array of pheromones that influence both the behaviour and the physiology of their nest mates. Most striking its the effect of queen mandibular pheromone, a chemical blend that induces young workers to feed and groom the queen and primes bees to perform colony-related tasks. Studies reveal that queen mandibular pheromone has profound effects on dopamine pathways in the brain and that these pathways play a central role in behavioural regulation and motor control. However there is a substantial variation in worker bees attraction to queen mandibular pheromone among individuals, and this variation is linked with specific differences in physiology and brain gene expression patterns.

– Neuronal signalling demands a high rate of energy consumption. Brain energy metabolism in bees powers information processing and behaviour in bees. When faced with limiting food resources, it seems that bees invest in their heads at cost of body size. However, this is not reflected in brain development. When fed more bees heads get bigger but not their brains. Recent research also suggests that there is a relationship between aggressive behaviour and energetics. When bees are aggravated they reduce their brain metabolism, the reason for this is not yet clear, but it is possible that aggravated bees, unlike mammals, reduce their neural activity in order to divert resources to muscles.

– Caffeine, which Coffea and Citrus plants use as a herbicide and insecticide, enhances bees memory of reward, and makes them more likely to remember a learned floral scent. Kenyon cells in the mushroom bodies of the bee brain integrate sensory input during associative learning and are involved in memory formation. Researchers have found that caffeine increase the excitability of the Kenyon cells.

– Nicotine, which is a natural herbivore defence toxin in plants, facilities olfactory (smell) learning in bees. Researchers have found four nicotinic receptors in the honeybee brain which are expressed in different brain regions, including the antennal lobes, which are the first relay of olfactory information from the bees antennae.

– Honeybees use celestial cues such as polarized light as a compass reference, and image movement across the retina to measure distance in order to navigate. Researchers believe they have found a complete circuit for path integration and steering in bees central complex.

– Attention allows animals to respond selectively to competing stimuli, enabling som stimuli to evoke a behavioural response while others are ignored. How brains does this remains unknown, although it is increasingly evident that even animals with the smallest brain display this capacity. When bees are presented with competing visual objects brain activity increases in the optic lobes and priced behavioural choices; this suggest that bees attention-like processes are pushed far out in the sensory periphery of the brain.

– Valence encoding is an important behavioural trait that enables individuals to distinguish between positive and negative situations. In bees neural activation patterns are distributed across distinct parts of the brain, suggesting that discrete circuits encode positive or negative stimuli. Researchers have found that the valance of social interactions is represented by distinct anatomical subregions of the bee brains mushroom bodies.

– Honeybees brain structure is plastic and responds to new experiences and environmental changes long after brain development is complete. Honeybees express pronounced age dependent specialisation when switching from various indoor duties to foraging outside the hive, which is accompanied by volume and neuronal changes in the brain and increased messenger RNA for genes in the brain. For example, the mushroom bodies are regions of the central brain important for sensory integration and learning. Their volume is influenced by behaviour and environment throughout a bees life, and become larger in bees who spend time foraging outside of the hive than in nurse bees who only spend time inside the hive. The complexity of neurons in the mushroom bodies of honeybee brains increases as a function of age, but foraging experience promotes additional neuronal branching and growth. A variety of proteins are expressed to different degree in the brains of nursing bees and foraging bees and are believed to be related to behaviour changes in bees.

– Experiences during early adulthood shapes the learning capacities and the number of synaptic boutons which facilities connections between neurons. Specifically, olfactory (smell) learning is impaired in bees who doesn’t experience the rich in hive environment during maturation. When bees are artificially reared the mushroom bodies of their brains are smaller than bees brought up in a hive, however their total brain size is the same and they show the same elemental learning abilities as in-hive reared bees. The mushroom bodies, and more specifically the lateral calyces, are smaller at emergence in artificially-reared bees compared to the in hive control. This may impair higher order cognitive functions, such as non-elemental learning tasks, which do not become evident when bees are faced with simple associated learning tasks.

– When bees are exposed to an intruder it leads to an immediate attack. It also leads to long-term changes in behaviour in response to a second intruder, and increases the probability of responding more aggressively to another intrusion. This can be correlated to expressions of genes in the honey bee brain, which suggest that social challenges temporarily change the neurogenomic state in bees brains and is likely to influence future behaviour.

– Young adult honey bees work inside the beehive “nursing” brood around the clock with no circadian rhythms while older bees forage for nectar and pollen outside with strong circadian rhythms. At the molecular level, findings suggest a link between honey bee foraging behaviour and up regulation of period messaging RNA in the brain. Foragers are the only behavioural group that consistently have high average daily levels. In addition, period messaging RNA levels vary in young bees dependent on their social environments. Taken together, these results suggest that social factors influence period messaging RNA expression in the bee brain and the regulation of clock genes and circadian rhythms.

Download pdf with references.